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Stress Distribution and Yield Surface Determination for
Center Cracked Layered Material

Sungho Kim* and Namhe Kim*
(Received December 1, 1993)

A model is constructed to analyze the stress and to determine the yield surface for cracked
layer which is perfectly bonded to the substrate. It is assumed that the layer and substrate are
isotropic and crack surface is subjected to a constant pressure. Mixed boundary value problem
is formulated by Fourier integral transform method, and governing equations are reduced to a
Fredholm integral equation. From the numerical analysis, stress components including Mises
stress are evaluated. Finally, using the Mises yield criterion, the yield surface is determined for

various layer-substrate combinations.
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1. Introduction

One of important reasons for using layered
materials is to improve the range of load toler-
ance. These layered materials may have defects
and some load endurance degradations are
expected. It is, therefore, of great practical impor-
tance to develop a rational and preferably simple
method to evaluate the stress field for cracked
layered materials. Sneddon(Sneddon, 1946) stud-
ied the stress distribution in the neighbourhood of
a crack in an elastic solid. Later, Hilton and
Sih(Hilton and Sih, 1970, 1971) considered the
plane extension of a crack parallel to the inter-
face. Recently, Kim and Oh(Kim et al., 1991 ; Oh
et al., 1992) extended their models by introducing
additional layer between cracked layer and half
space, and evaluated stress intensity factors under
uniaxial loading, in-plane and anti-plane loading,
respectively. However, the above mentioned
models concentrated only on determining the
stress intensity factors.

In this analysis, Hilton and Sih’s model is
repeated to thoroughly evaluate stress compo-
nents in the layer and the substrate including
Mises stress thereby analyzing the effect of layer
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thickness and shear modulus ratio between the
layer and the substrate.

2. Equations and Derivations

Consider a cracked elastic layer sandwiched
between two substrates. The coordinate system
and the geometry are shown in Fig. 1. It is
assumed that the layer is perfectly bonded to the
substrate. Using the Fourier integral transforma-
tion method, mixed boundary value problem in
the plane theory of elasticity is formulated as
follows(Sneddon,1951),
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Fig. 1 Geometry and configuration of the problem
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where,

Gi=[A:(&) + &yBi(£)]cosh(&y)

+[CUE+ EyDi(&)]sinh(&y)  (6a)
Go=[Ao &)+ EyBo(&)]e™® (6b)
where, y; is the shear modulus, y; is the Poisson’
s ratio with subscript indices ;=0 and 1 represent-
ing the substrate and layer, respectively. The
coefficents A,(&), Bi(€). Ci(€), Di(E£), Aol€) and

Bo(£) are to be determined.

2.1 Boundary conditions
When a plane strain type constant pressure is
applied at the crack surface as studied by Hilton
and Sih(Hilton and Sih, 1971), considerations of
the upper half plane are necessary due to the
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where,
I'= /o, 2= H/a),
R=e"%/coshz, é=qa/a (144d)

The method of Copson(Copson, 1961) is utilized
as,

M@= [0t (15)

where, Jo(£¢) is Bessel function of first kind of
order zero. Then, the following equation is der-
ived.
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geometrical symmetry. The boundary conditions
are as follows,

Own==—p0 y=0 —g<x<gqa (7a)
vy=0 y=0 x>gorx<—g (7b)
Oxyy=0 y=0 —oo<x<x (8)
Oxy()=Oxyy Yy=H —oco<x< 0 9)
Ow(y=0yyy y=H —oco<x<co (10)
U= U y=H —oo<x< 0o (1
V)= Vo) y=H —oo<x<w (12)

2.2 Fredholm integral equation

By applying the boundary conditions to the
elasticity equations, following pair of dual inte-
gral equations are obtained.

[:M(E)coséxd£=0 x|>a (13a)
[T F©M@costxdz=mpy 1xl<a  (13b)
Here, F(£) is defined as
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Using the following non-dimensional parameters,
t=ar s=ac x=aXk (17a)
#(s)=rmavo po®(0) (17b)

Equation (16) is reduced to a Fredholm integral
equation of a second kind.

y=ay

O(o)+ f 'O(DK(r. o)dr=V5  (18a)

where,

K(z, 0)=y7o f "l F(a)— 1) ar)Jolao)da
(18b)

To solve the Fredholm integral equation, Simp-
son’s integration technique is
(Abramowitz and Stegun, 1970),

utilized as
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0o+ B 0K (tm: ) Wen) =1z
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where,
K( Tm> Un)=v Tmo'ngla’k[F(ah)_ 1]
jo(dkfm)]o(akdn) Wi(as) (18d)

Here,
Tm» Qi ' iNtegration point
om : collocation point

W(ax), W(zn): Simpson’s weight factor
Nr, N :number of integration point

By introducing rm=o0n(m=1, Nr), Eq. (18a)
becomes

Nr

El[amn+K(Tma rn)]d)(rm)=s/5 (19)
(n=1, Nr)
and finally @(r,) can be determined numerically.
2.3 Stress distributions
At once @(r,) is numerically determined, the
stress distributions for the layer and substrate can
be evaluated from Egs. (1)~(5) and Egs. (13)
~(15) as follows,
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Here,
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Numerical evaluation of the (20) can be made as
follows,
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Here, N, is the number of integration point with
W(a,) being the Simpson’s weight factor.

2.4 Mises stress

The Mises stresses for the plane strain case,
Oeqqsy for layer and substrate are as follows,

Oeq(j) =
\/%{( 015 = 0ap)* + (0200 — 03))* + (030 — 015))?}
(24)

where,
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2.5 Yield surface determination
Mises yield criterion for layer and substrate is
as follows,

Oeq(1)= Oy(1)» Oeq(t)= Oy(0) (25)

where, gy and gy, are yield strengthes for layer
and substrate, respectively.

Then, the yield surfaces for layer and substrate
can be determined for given crack face pressure, Do

3. Numerical Results

Numerical analysis is performed for various
layer-substrate combinations. The shear modulus
ratio (I"= s/ 1), crack length vs. layer thickness
ratio(a/H), and Poisson’s ratio(y,) are parameters
for the analysis. First, the normal and shear
stresses for the case of homogeneous material are
calculated at several locations and showed good
agreement with the results of Sneddon(Sneddon,
1946) as in Table. 1.
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Table 1 Stress components comparison between sneddon(Sneddon, 1946) and current results for homogeneous

case
x=1.1 x=1.0 x=1.1 x=15 x=1.0 x=15
y=0.0 y=0.1 y=0.1 y=0.0 y=0.5 y=15
Govity Sneddon 1.4004 1.4299 1.5043 0.3416 0.1882 0.0491
Po Current 1.4005 1.4299 1.5045 0.3416 0.1883 0.0491
Gexits Sneddon 1.4004 -0.0257 0.3338 0.3416 -0.1996 -0.0848
Po Current 1.4005 -0.0256 0.3338 0.3417 -0.1996 -0.0848
Orvats Sneddon 0.0 -0.8460 0.1948 0.0 -0.4367 -0.1360
Po Current 0.0 -0.8459 0.1949 0.0 -0.4367 -0.1360
Geats Sneddon 0.5602 1.9532 1.1299 0.1367 0.8275 0.2626
Po Current 0.5602 1.9530 1.1301 0.1367 0.8276 0.2626

Figure 2 is the normal stresses in y direction at
the mid-plane for various shear modulus ratios
and crack length vs. layer thickness ratios. The
stress is most concentrated near crack tip for thin 2l $easmra
stiff layer case (a/H=4.0, ['=4.0). Figure 3 is the £
normal and shear interfacial stresses between the
layer and the substrate. It is noted that normal
stress in x direction is discontinuous at the layer-
substrate interface due to the material mis-match.

The maximum mis-match occurred above the

crack location for thin stiff layer case(a/H=4.0, T I
s 4
r=40). e
Figure 4 is the normal stress contours and Fig. ‘& \m 0 ™ 200 W gy 1
5 is the shear stress contours for various layer- “1 -0z
substrate combinations. The maximum contour !
level is 1.3 p, with each contour interval being 0.1 b
po- When the layer is thin(a/H=4.0), the stress "[ LRI
distributions are influenced by the shear modulus * (b) Zex0— Oxxty
ratios ; For stiff layer case(/"=4.0), the resultant o
g 9T
Oy 4 23 ""'“‘-r‘f\
Po " 0 / ¥ g
3 o i R AT T
. AM=A0L ~075 o [=1.0,T=18 WM-4.25,r-025
aMe0.25T -40
2 M-1014 o3 o
5 Pl a4 me4n. I
' WH-40T 48 45 1
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Fig. 2 Normal stress distributions at mid-plane for Fig. 3 Interfacial stress distribution for various [°
g 2

various [" and a/H and a/H
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Fig. 4 Normal stress contours for various " and a/H (g,y;,/po)

stresses in the layer are higher than those of soft
layer case(]"=0.25) while the substrate stress is
slightly lower than that of soft layer case(['=
0.25). When the layer is relatively thick(a/H=1.0),
however, the stress distributions are nearly in-
fluenced by the shear modulus ratios because in
that case the inhomogeneity between the layer and
the substrate is remotely localized and therefore
does not influence the stress fields as stated in the
Saint-Venant’s principle.

Similar results are obtained on the Mises stress
contour as shown in Fig. 6. It is also noted that

the Mises stress is discontinuous at the layer-
substrate interface due to the material mis-match.
Figure 7 is the yield surface deterimined from the
Mises yield criterion for various crack surface
pressure po. Two cases of layer-substrate combina-
tions are considered ; The tungsten layer bonded
to steel substrate and copper layer bonded to steel
substrate represent the case of hard layer and the
case of soft layer, respectively with the material
properties as in Table. 2. When the crack surface
pressure is 300MPa, the hard layer case resulted
in smaller yield region confined in the layer
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Table. 2 Material properties for hard layer case
(tungsten layer bonded to steel substrate)
and soft layer case(copper layer bonded to
steel substrate)

Shear modulus Yield strength
(1) (ov)
Steel 80 GPa 300 MPa
Tungsten 160 GPa 1,000 MPa
Copper 45 GPa 70 MPa

whereas the soft layer case resulted in larger yield
region extended to the layer-substrate interface.

4. Conclusions

The stress distributions and yield surface for
cracked layer perfectly bonded to the substrate are
analyzed. By following the theory of linear elastic-
ity, a Fredholm integral equation is derived in
matrix form which may enable the future analysis
for multiple layer case, and solved numerically.
The stress components as well as the Mises stres-
ses are evaluated for various layer-substrate com-
binations. When the layer is thin, the stress distri-
butions are clearly influenced by the shear
modulus ratios between the layer and the sub-
strate. Finally, using the Mises yield criterion, the
yield region is determined for hard layer case and
soft layer case. The hard layer case resulted in
smaller yield region confined in the layer whereas
the soft layer case resulted in larger yield region
extended to the layer-substrate interface.
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