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Stress Distribution and Yield Surface Determination for
Center Cracked Layered Material

Sungbo Kim * and N ambo Kim *
(Received December 1, 1993)

A model is constructed to analyze the stress and to determine the yield surface for cracked

layer which is perfectly bonded to the substrate. It is assumed that the layer and substrate are

isotropic and crack surface is subjected to a constant pressure. Mixed boundary valuf: problem
is formulated by Fourier integral transform method, and governing equations are reduced to a
Fredholm integral equation. From the numerical analysis, stress components including Mises

sUess are evaluated. Finally, using the Mises yield criterion, the yield surface is determined for

various layer-substrate combinations.
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1. Introduction
thickness and shear modulus ratio between the
layer and the substrate.

Fig. 1 Geometry and configuration of the problem

2. Equations and Derivations
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Consider a cracked elastic layer sandwiched
between two substrates. The coordinate system
and the geometry are shown in lFig. I. It is

assumed that the layer is perfectly bonded to the
substrate. Using the Fourier integral transforma

tion method, mixed boundary value problem In

the plane theory of elasticity is formulated as
follows( Sneddon, 1951),

_ 1 foo ffGj -i~xdE
(JxxU)- 27[' -00aye '>

Om: of important reasons for using layered
materials is to improve the range of load toler

ance. These layered materials may have defects
and some load endurance degradations are

expected. It is, therefore, of great practical impor
tance to develop a rational and preferably simple

method to evaluate the stress field for cracked
layered materials. Sneddon(Sneddon, 1946) stud

ied tht: stress distribution in the neighbourhood of
a crack in an elastic solid. Later, Hilton and
Sih(Hilton and Sih, 1970, 1971) considered the
plane extension of a crack parallel to the inter

face. Recently, Kim and Oh(Kim et aI., 1991 ; Oh

et aI., 1992) extended their models by introducing
additional layer between cracked layer and half
space, and evaluated stress intensity factors under

uniaxial loading, in-plane and anti-plane loading,

respectively. However, the above mentioned
models concentrated only on determining the
stress intensity factors.

In this analysis, Hilton and Sih's model is
repeated to thoroughly evaluate stress compo
nents in the layer and the substrate including
Mises stress thereby analyzing the effect of layer
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where,

G\ = [A\(';) + ';yB1(';)]cosh(.;y)
+ [Ct(.;)+ ';yDI(';) ]sinh(';y) (6a)

Go= [Ao(';)+ ';yBo(';)]e- ty (6b)

(l4a)

(l4b)-(~~~)R 1
[2(1- vz) - z]rR

- [(1- 2vd +z]rR

¢>(s)+ ;:a¢>U )KU, s )dt = JrPos (16)

O"yy(1) = - Po y=O -asxsa (7a)
.v(1)=O y=O x>a or x<-a (7b)
O"Xy(l) =0 y=O -oo<x<oo (8)
O"Xy(l) = aXY(O) y=H -oo<x<oo (9)

ayy(l) = ayy(O) y=H -oo<x<oo ( 10)

U(I)= U(O) y=H -oo<x<oo (II)

V(1)= V(O) y=H -oo<x< 00 (12)

geometrical symmetry. The boundary conditions
are as follows,

Here, F(';) is defined as

r
F(a)] r tanhz-z j
d\(a) _ Q - ztanhz
ao(a) - - z-(l-2v,)tanhz

bo(a) ztanhz-2(1-v\)

where,

1:M(';kos';xd';=O Ixl >a (l3a)

1:F(';)M(';kos';xd';=JrPo Ixlsa (l3b)

2,2 Fredholm integral equation
By applying the boundary conditions to the

elasticity equations, following pair of dual inte
gral equations are obtained.

Using the following non-dimensional parameters,

t=ar s=aO" x=ax y=ay (l7a)

¢>(s)=Jra.;6Pofb(a) (l7b)

Equation (16) is reduced to a Fredholm integral
equation of a second kind.
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B\(';) I

Ct(.;) -I M(a)
D,(';) d\(a) a

A o(';) ao(a)
B o(';) bo(a)

where,

where, !J.j is the shear modulus, Vj is the Poisson'

s ratio with subscript indices j =0 and I represent
ing the substrate and layer, respectively. The

coefficents A\(';), B\(';), Ct(';), D\(';), Ao(';) and
Bo(';) are to be determined.

2.1 Boundary conditions
When a plane strain type constant pressure is

applied at the crack surface as studied by Hilton

and Sih(Hilton and Sih, 1971), considerations of

the upper half plane are necessary due to the

ztanhz

z+tanhz
2(1- vd + ztanhz
(1- 2v,)tanhz- z

r=!J.'/f-/.o, z=a(H/a),
R=e-z/coshz, ';=a/a (14d)

The method of Copson( Copson, 1961) is utilized

(l8a)

where,

as,

(15)

where, ]o(.;t) is Bessel function of first kind of
order zero. Then, the following equation is der
ived.

K( r, a)= IW;:~a[F(a) -1]fo(ar)fo(aa)da

(l8b)

To solve the Fredholm integral equation, Simp
son's integration technique is utilized as
(Abramowitz and Stegun, 1970),
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where,

N.

(JXY(j)( x, y)= iPo '2. ak T(ak)Q2j(ak, y)
k=O

sinakxW(ak)

(25)(Jeq(l) = (Jy(l)' (Jeq(o) = (Jy(O)

2.5 Yield surface determination
Mises yield criterion for layer and substrate is

as follows,

I
(Jl(J) =i-<O'xx(j) + (Jyy(J»

+ / (Jiy(j) + ~ «(Jxx(J) - 0'y'y(j))2

I
(J2(J) =i-< (Jxx(J) + (JY.Y(J»

- / (Jiy(J) + ~ «(Jxx(j) - (Jy'y(J»2

(J3(J) = Vj«(JI(J) + (J2(J»

(Jeq(j) =

/ ~ {( (J1(J) - (J2(j»2+ «(J2(J) - (J3(J»2 + (0'3(J) - (Jl(J»2}

(24)

N.
(Jxx(J)( x, y)= Po '2. ak T(a.,)Q3iak. y)

k=O
cosakxW(ak) (23)

Here, N k is the number of integration point with
Weak) being the Simpson's weight factor.

2.4 Mises stress
The Mises stresses for the plane strain case,

(Jeq(j) for layer and substrate are as follows,

(n=l, N F )

and finally <1>( rm) can be determined numerically.
2.3 Stress distributions
At once <1>( rm) is numerically determined, the

stress distributions for the layer and substrate can
be evaluated from Eqs. (1)-(5) and Eqs. (13)

-(15) as follows,

(Jyy(J)( x, y)= - Po;:ooaT(a)Q1j(a, ykosaxda

(JXy(j)(x', y)=iPo;:ooaT(a)Q2j(a, y)sinaxda

(Jxx(Jij', y)=Po;:ooaT(a)Q3ia, ykosaxda

(20)

Here,

rm, ak : integration point
(Jm : collocation point

Weak), W(rm): Simpson's weight factor
NF , N.. : number of integration point

By introducing rm=(Jm(m= 1, NF ), Eq. (l8a)
becom4~s

K(rm, (In)=Jrm(Jn ~ a.,[F(a.,)-I]
m=l

]O(a.,rm)fo(a.,(Jn) W(a.,) (l8d)

where,

Here,

T(a)= ;:1..;r<1>(d]o(addr (21)

Qu(er, y)= [F(a) +ayMa)]coshay

+ [cl(a)+ aydl(a)]sinhay

QI2(a, y)= [F(a) +aybl(a)+ dl(a)]sinhay

+ [bl(a)+ cl(a)+ aydl(a)]coshay

QI3({l~, y)= [F(a)+ ayMa) +2dl(a)]coshay

+ [2bl(a)+ cl(a)+ aydl(a)]sinhay

Q21(a, y)=[ao(a)+ aybo(a»)e-ay

Q22(a, y)=[ -ao(a)+(I-ay)bo(a)]e-ay

Q23(a, y)=[ao(a)+(ay-2)bo(a)]e- ay (22)

Numerical evaluation of the (20) can be made as
follows,

where, (Jy(l) and (Jy(O) are yield strengthes for layer
and substrate, respectively.

Then, the yield surfaces for layer and substrate
can be determined for given crack face pressure, Po.

3. Numerical Results

Numerical analysis is performed for various
layer-substrate combinations. The shear modulus
ratio (r= fl.l/ f-lo), crack length vs. layer thickness
ratio(a/H), and Poisson's ratio(vj) are parameters
for the analysis. First, the normal and shear
stresses for the case of homogeneous material are
calculated at several locations and showed good
agreement with the results of Sneddon(Sneddon,
1946) as in Table. 1.
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Table 1 Stress components comparison between sneddon(Sneddon, 1946) and current results for homogeneous

case

X=1.1 X= 1.0 X= 1.1 X= 1.5 x=1.0 x= 1.5

y=O.O y=O.1 y=O.1 y=O.O y=0.5 y=1.5

I Sneddon 1.4004 1.4299 1.5043 0.3416 0.1882 0.0491
6 YY (I)

Po Current 1.4005 1.4299 1.5045 0.3416 0.1883 0.0491

Sneddon 1.4004 -0.0257 0.3338 0.3416 -0.1996 -0.0848
6 XX (I)

Po Current 1.4005 -0.0256 0.3338 0.3417 -0.1996 -0.0848

Sneddon 0.0 -0.8460 0.1948 0.0 -0.4367 -0.1360
6 xy(l)

Po Current 0.0 -0.8459 0.1949 0.0 -0.4367 -0.1360

Sneddon 0.5602 1.9532 1.1299 0.1367 0.8275 0.2626
6eq(l)

Po Current 0.5602 1.9530 1.1301 0.1367 0.8276 0.2626

6 xx (0) - 6 xx(l)

Po
(b)

Figure 2 is the normal stresses in y direction at

the mid-plane for various shear modulus ratios

and crack length vs. layer thickness ratios. The

stress is most concentrated near crack tip for thin

stifTlayer case (a/H=4.0, r=4.0). Figure 3 is the

normal and shear interfacial stresses between the

layer and the substrate. It is noted that normal

stress in x direction is discontinuous at the layer

substrate interface due to the material mis-match.

The maximum mis-match occurred above the

crack location for thin stifT layer case( a/H = 4.0,

r=4.0).
Figure 4 is the normal stress contours and Fig.

S is the shear stress contours for various layer

substrate combinations. The maximum contour

level is 1.3 po with each contour interval being 0.1

Po. When the layer is thin(a/H=4.0), the stress

distributions are influenced by the shear modulus

ratios; For stifT layer case(r =4.0), the resultant

'.10 ,... 1M xl. UI

Fig. 2 Normal stress distributions at mid-plane for
various rand a/H

~.
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(c) 6 xy/po

Fig. 3 Interfacial stress distribution for various r
and a/H
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Fig. 4 Normal stress contours for various rand ajH «1yyujpo)

stresses in the layer are higher than those of soft

layer case(r=0.25) while the substrate stress is
slightly lower than that of soft layer case(r=
0.25). When the layer is relatively thick(ajH= 1.0),
however, the stress distributions are nearly in
fluenced by the shear modulus ratios because in
that case the inhomogeneity between the layer and
the substrate is remotely localized and therefore

does not influence the stress fields as stated in the
Saint-Vell1ant's principle.

Similar results are obtained on the Mises stress

contour as shown in Fig. 6. It is also noted that

the Mises stress is discontinuous at the layer
substrate interface due to the material mis-match.

Figure 7 is the yield surface deterimined from the
Mises yield criterion for various crack surface
pressure Po. Two cases of layer-substrate combina
tions are considered; The tungsten layer bonded
to steel substrate and copper layer bonded to steel
substrate represent the case of hard layer and the
case of soft layer, respectively with the material
properties as in Table. 2. When the crack surface
pressure is 300MPa, the hard layer case resulted

in smaller yield region confined in the layer
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Fig. 5 Shear stress contours for various rand a/H (O"XY(j)/Po)

2.00
...:i

a

1.75

2.00

...x...
a

'.75

'.50

(a) a/H=4.0 and r=4.0 (b) a/H=4.0 and r=O.25



Stress Distribution and Yield Surface Determination ... 189

xl. 2.00

\

1.501.000.50

(d) a/H=2.0 and r=0.25

1.50

1.00

1.25

0.75

0.50 I------r-----.-~.."....+---,---~

0.25

2.00 r--~=---------.__-----_
..:L
•

1.75

1.50

1.25 t---_

1.00

2.00

..L
•

1.75

1.50

0.75

1.25

0.25

0.75

0.50

0.25 r---_.

O'0<i> 00 xl. 2.00

Fig. 8 Yield surface for soft layer case (copper layer
bonded to steel substrate)
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Fig. 7 Yield surface for hard layer case (tungsten
la,yer bonded to steel substrate)
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Table. 2 Material properties for hard layer case
(tungsten layer bonded to steel substrate)
and soft layer case(copper layer bonded to

steel substrate)

Shear modulus Yield strength

(Il) «(1y)

Steel 80GPa 300 MPa

Tungsten 160 GPa 1,000 MPa

Copper 45 GPa 70MPa

whereas the soft layer case resulted in larger yield
region extended to the layer-substrate interface.

4. Conclusions

The stress distributions and yield surface for
cracked layer perfectly bonded to the substrate are

analyzed. By following the theory of linear elastic
ity, a Fredholm integral equation is derived in

matrix form which may enable the future analysis
for multiple layer case, and solved numerically.

The stress components as well as the Mises stres
ses are evaluated for various layer-substrate com
binations. When the layer is thin, the stress distri

butions are clearly influenced by the shear

modulus ratios between the layer and the sub

strate. Finally, using the Mises yield criterion, the

yield region is determined for hard layer case and
soft layer case. The hard layer case resulted in

smaller yield region confined in the layer whereas
the soft layer case resulted in larger yield region

extended to the layer-substrate interface.
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